

Energoservis Engineering Company

Best Implemented innovative Project for Russian States Grid company «Rosseti»

Complex innovative products for overhead power lines of 35–750 kV

Providing simple solutions to complex challenges

The new principle of production of plastically deformed unidirectional twisted conductors and Ground-wire (including OPGW) turned out a very promising direction in the development of the conductors production technology. The most attractive features of new conductors type are: an effective use of the internal volumetric space, better mechanical strength and carrying capacity at a very moderate costs, reduction of aerodynamic load and icing, low operating elongation and excellent stability.

Maximum coefficient of filling in the least costly way

Experience of 18,000 kmof transmission lines

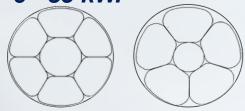
<u>Patent</u> DE102014101833

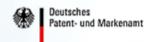
The general technological principle - plastic deformation

Tested in Germany (in SAG & FGH) under the control of VDE for compliance with DIN EN 50540, DIN EN 62004, 48207, 62568, IEC 61284, 61854, Cigré 426, DIN EN 62568, IEEE 1138

Products for new overhead power lines (OHL)

Products for reconstruction of old OHL without replacement of supports




High temperature (ASHT, tcw=150°C,tmax=210°C) and high strength (ASHS, tmax=90°C) performance

The cross sections for aluminum from 128 to 700 mm² for OHL 35 - 750 kW.

The cross sections for aluminum from 46 to 112mm² for overhead power lines 6 - 35 kW.

ANHS

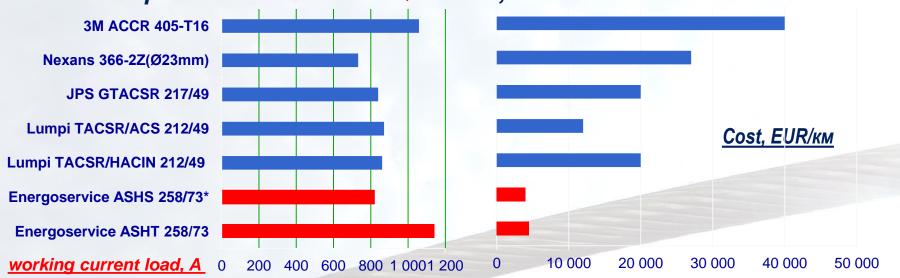
Conductor made

of high-strength aluminum alloy

with no core.

For overhead power lines

6 - 110 kW. (tmax=90°C)



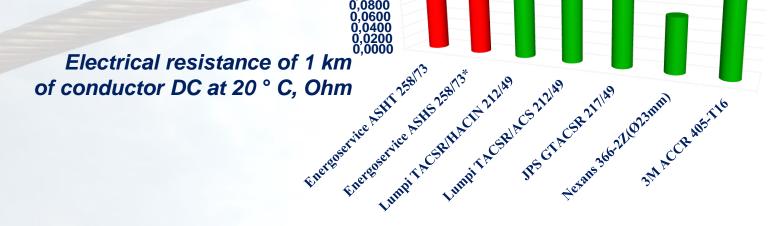
Comparative analysis by PJSC "Rosseti" (State Russian Grid Company)

The fundamentally new technology provides costs on conductors ASHS/ASHT and refurbishment of overhead line with these conductors.

Comparison of conductors **Ø 21mm**, with similar characteristics.

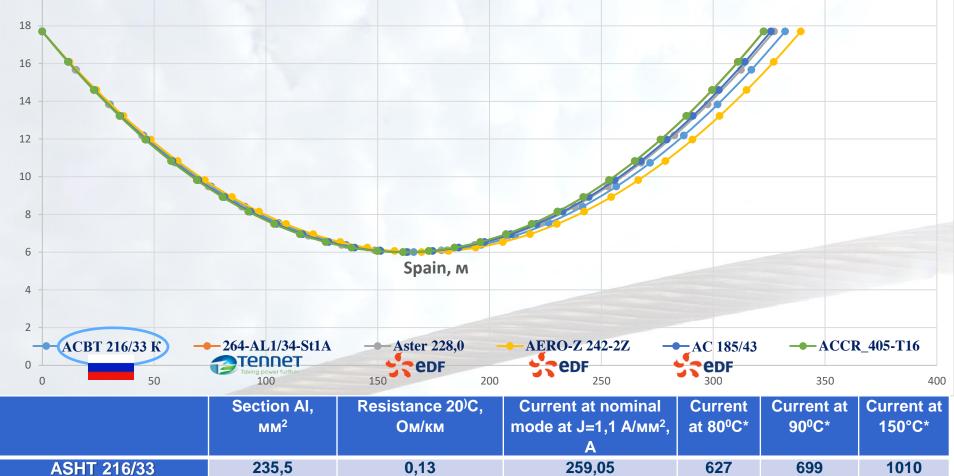
Tested in Germany for compliance with DIN EN 50540, DIN EN 62004, 48207, 62568, IEC 61284, 61854, Cigré 426, DIN EN 62568, IEEE 1138

✓ ASHS and ASHT conductors are expand designing of HV power lines and allow dealing with the goals that used to be unpractical or used to require great efforts and costs.


Comparison of conductors **Ø 21mm**, with similar characteristics

ASHT conductors on the complex technical and economic characteristics are superior to all similar articles.

0,1400 0,1200



Possibilities of solving the main problems of overhead lines construction and operation through the joint use of compacted conductors

Problem	Solution based on classical ACSR application	Solution based on ASHS/ASHT conductors application	Confirmation
Reducing corona losses and noise level, without increasing conductor's diameter	-	+	Experimental confirmation of "R&D Center "FGC UES", JSC and VDE (Germany)
Increasing lightning protection and resistance to short circuit currents	-	+	Experimental confirmation of "R&D Center "FGC UES", JSC and VDE (Germany)
Significant reduction of elongation in operation	-	+	Experimental confirmation of "R&D Center "FGC UES", JSC
Reducing vibration, galloping and oscillations selfdamping while keeping conductor diameter	-	+	Experimental and computational confirmation of VSTU, JSC "VNIIZHT" and MPEI
Increasing span length and (or) sags, without increasing conductor's diameter	-	+	Design solutions
Replacing the conductor on the existing transmission poles, decreasing the load on all elements of overhead line and (or) increasing its transmission capacity	-	+	Design solutions
Decreasing wind pressure while keeping conductor diameter	-	+	Computational confirmation of VSTU and MPEI
Replacing the conductor in the ring networks and decreasing conductor diameter	-	+	Design solutions
Reduction of icing, while keeping conductor diameter	•	+	Computational confirmation of VSTU and MPEI
Keeping transmission capacity in areas with high air temperatures and solar activity, without increasing conductor's diameter	-	+	Design solutions and computational confirmation of VSTU and MPEI

Comparison of test pilot wire in Germany with wires used by TenneT and FDF

20

	Section AI, MM ²	Resistance 20 ⁾ С, Ом/км	Current at nominal mode at J=1,1 А/мм², А	Current at 80°C*	Current at 90°C*	Current at 150°C*
ASHT 216/33	235,5	0,13	259,05	627	699	1010
264-AL1/34-St1A	263,7	0,1095	290,0	687		
ANVP 240,72 6101 T4-290	240,72	0,106	264,8	708		
AERO-Z 242-2Z	241,98	0,139	266,2	610		
ACCR 185/43	185,0	0,1559	203,5	589		
ACCR_405-T16	205,0	0,146	225,5			1100
Aster 228,0	288,34	0,115	317,2			

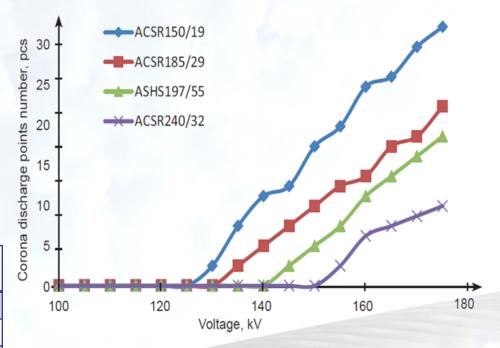
Given the difference of aluminum sections of our products are comparable or superior to counterparts in the EU

Additional economic benefit due to high breaking strength:

- decrease in the number of supports and reduce sag;
- > the reduce level of internal corrosion in the conductor;
- > the intensity of the formation of ice due to the surface shape;
- > the reduce amplitude of pitching conductors.
- > Significantly lower operating elongation
- ➤ The application of plastic compression ASHS or ASHT conductors makes it possible to reduce the wind load by 25-35% compared to conventional wires with similar values of the area of aluminum layers.
- In case of application for repair/upgrading works at the old OHL, new conductors in high-temperature execution are optimum, especially

considering their rather low cost.

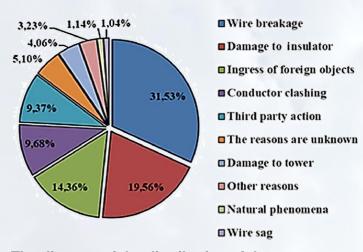
- > Practically standard fittings
- ❖ By results of the conducted comparative researches of conductors of identical diameter critical corona voltage for ASHS/ASHT Increase relative to the standard steel-Aluminum conductos.
- In the same time the corona-induced acoustic noise are reduction.



Testing of corona discharge

ASHS 197/55 wire manufactured by compacted technology has corona discharge voltage 142.2 kV by 5.7% higher than ACSR 185/29 conductor 134.5 kV with the same diameter 18.8 mm

Conductors	Average annual	
	losses, change, %	
ASCR 240/32 Ø 21,6 мм	+ 26,67%	
ASCR 300/39 Ø 24,0 мм	0,00%	
ASCR 330/43 Ø 25,2 мм	-13,33%	
ASHS <u>317/47 Ø 22,3 мм</u>	-13,33%	
ASHS 295/44 Ø 21,5 мм	-6,67%	

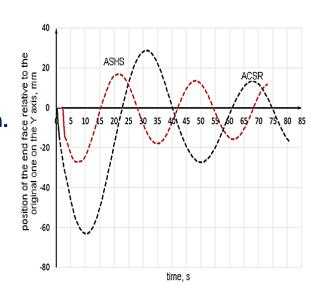

According to the conditions of the corona ASHS / ASHT 216/33 - Ø 18.5 mm, comparable to ASCR-240/32 - Ø 21.6 mm

Radio interference voltage test (ASHT 216/33, FGH Engineering & Test GmbH)

applied	measured radio interference voltage					
voltage kV	decreasing of applied voltage μV	increasing of applied voltage µV	decreasing of applied voltage μV			
167,7	25000	25300	27400			
153,7	13300	12400	12600			
139,7	8750	9500	6600			
125,7	84	4500	2066			
111,8	79	3000	76			
97,8	72	67	63			
83,8	58	60	54			
70,0	54	52	46			
55,9	46	45	42			
41,9	42	42	40			

Line accident risk reduction

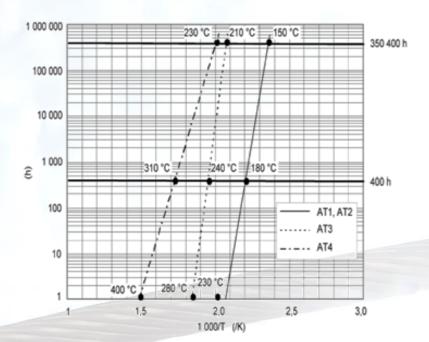
The diagram of the distribution of the causes of technological disruptions on overhead transmission line

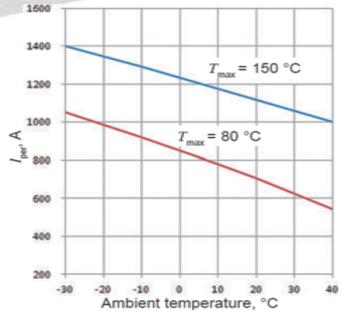

► The application of plastic compression products makes it possible to reduce the wind load. Conductors ASHS/ASHT by Energoservice, having streamlined design is lower by 33% on the average.

V,	Wind load on wires, N / m					
м/с	ASHS	ASCR	ASHS	ASCR	ASHS	ASCR
1017 0	128/37	120/19	216/32	240/34	277/79	240/56
25	3.6	4.8	4.9	6.9	5.2	7.0
32	5.9	7.9	7.8	11.4	8.4	11.5
60	20.8	28.5	28.4	41.5	29.8	41.6

- •The design ASHS/ASHT provides:
- Icing reduction Due to high torsion stiffness and smaller diameter

Oscillation: The ASHS wire 128/36 due to the closer contact of the single strands, the initial amplitude and period of oscillation is approximately 1.7 times less than that of the ACSR wire 120/27 at the same dialed speed of the bent conductor under impulse action. Vibration after the disturbing effect is extinguished due to the expenditure of energy on the internal friction between the strands. In wires that are compacted due to plastic deformation, developed contact areas are obtained both inside the layer and they enter the empty space in neighboring layers, so the displacement of the layers relative to each other is difficult.


Self-quenching of vibrations is provided.



Transmission capacity OHL with high ambient temperature

- Due to its design features, ASHT hightemperature wire is cheaper by several times regarding to analogs with a longterm permissible temperature of 150 °C.
- ➤ Continuous permissible current for high-temperature conductor is 30-35% higher than the value for standard conductor of the same diameter.
- **❖** A significant reduction lengthening in operating drawing plastically deformed conductors are confirmed by series of experiments.

The correct definition of the conductors creep has recently become one of the important requirements arising from the Exploitation organizations, as it turned out that the capacity of many of the overhead Lines may not be fully utilized due to increased, after many years of service, sag of the conductors

Comprehensive proper usage of plastically compacted ASHS/ASHT conductors for the new construction and reconstruction of OHL 35-750 kV can significantly increase their reliability when exposed to the entire range of climatic loads, increase throughput, reduce capital and operating costs.

Almost all the exploitation parameters of the new conductors important for the OHL designer do exceed greatly than those for ordinary ones, for a very moderate cost.

- **❖** The new conductors are excellent for new construction in regions with excessive wind/ice loads or for extended transition.
- ***** The high-temperature execution are optimum for:
- ✓ In case of application for repair/upgrading works at the old OHL, new conductors, especially considering their rather low cost.
- ✓ In constructing the ring network circuits and network with the possibility of congestion during the post-emergency modes
- **✓ In regions with high air temperatures**
- **❖** The most effective integrated use ACHS/ACHT together with Groundwire cables (OPGW) by Energoservice, possessing similar mechanical characteristics.

Parameters of the conductors to be compared

Span length of OHL at one and the same sag, m

Conductor elasticity modulus, E*10-3, N/mm2

Specific losses of electricity at the same current load (150 A), MWh/km per year

Sag at the highest air temperature (+40 °C), m, for the spans:250 m

Sag at ambient temperature - 5 ° C in the 3rd region of the wind and ice

The electric field of the corona onset at dry weather, kV/cm

Conductor temperature expansion coefficient, 10⁻⁶ 1/°C

Core cross section, mm²

Alum cross section, mm²

Rated Breaking strength, daN

Towers on the 10 km of OHL

DC Resistance (20 °C), Ohm/km

Diameter, mm

load, m:250/300

Max current load, A

ACSR150/24

24,2

149

17,1

5227,9

554

280

37

41,7

19,2

82,5

6,29

9,26

6,66

9,63

34,04

0,2039

300 m

value

ASHS (ASHT) 162/47

value

47,3

162,3

17,1

9882,4

590,5(822)

364

27

36,4

16,7

88

3,32

4,87

4,41

6,04

40,0

0,1780

Change in percent to ACSR

+90

+8,9

0,0

+89,0

+ 6,6 (+ 48,4)

+ 30

- 27

- 12,7

- 13

+6.7

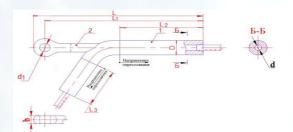
- 47.2

- 33,8

+17.5

-12,7

5	
Onergoserve Corr	standard conductor Ø 17,1mm
mergoservise.com	Standard Conductor & 17, 1111111
	An important task is: to identify where the use of new conductors will be most effective


Compa	arison of ASHS and ASH I	cnaracteristics	<u> WITN</u>
	standard conductor Ø	17,1mm	

Our conductors don't demand difficult and expensive fittings.

The "conductor-fittings" systems have passed a series of tests in accordance with the rules of PJSC "Rosseti".

The types of fittings, with which conductors were tested

The pressed fittings

The Spiral fittings

Also vibration quenchers are developed

Ground-wire cable & OPGW

The plastically deformed galvanized ground conductor resistant to to lightning strikes with charges 147 ampere-second, and following vibration exposure 10 After testing, the breaking strength was 100% of it's initial value. The tests were carried out several times with same result.

- Optimum integrated use of our wires and our ground wire, taking into account the comparability of mechanical characteristics.
- The adequacy of the test and parameters for requirements (DIN & IEC), confirmed by SAG Deutschland Versuchs- und Technologiezentrum
- ✓ The product plated by aluminum has lost mechanical durability after exposure to lighting 85 KL; its actual strength during the test reduced to 32.8 kN (49.6 % of the nominal breaking load).

The operational stretching of conductors - one of the most important requirements for the overhead lines. Reducing of extraction plastically deformed, galvanized OPGW, confirmed experimentally.

Cable barriers 2013

Russian Railways

2001